Clairant's Thin:
If
$$f_{xy}$$
 and f_{yx} both exists and
continuous on domain s_{2} ,
then $f_{xy} = f_{yx}$ on s_{2} .
 $f_{xx}g_{yz} = ((f_{x})_{xy})_{yz}$
 $= ((f_{x})_{yx})_{yz}$
 $= f_{xyx}g_{y}$
 $= f_{xyx}g_{y}$
 $= ((f_{yx})_{yx})_{y}$
 $= ((f_{yx})_{yx})_{y}$
 $= ((f_{yx})_{yx})_{y}$
 $= f_{yyxyx}$
 $= \cdots = f_{yy}r^{xy}$
 $= f_{yyyxr} = \cdots$
For k -th pontal derivatives,
We can drage the order as we wish
by surfoling the 2 successive partial derivatives
provided that $f_{zs} \subset k$
 $(k : all k-th under partial derivatives)$
 $exist and continuous.$

\$14.3

56. The fifth-order partial derivative $\partial^5 f / \partial x^2 \partial y^3$ is zero for each of the following functions. To show this as quickly as possible, which variable would you differentiate with respect to first: *x* or *y*? Try to answer without writing anything down.

a.
$$f(x, y) = y^2 x^4 e^x + 2$$

If we freat everything unrelated to x
as constant:

$$f(x,y) = C, x^4 e^x + C_x$$

If we freat everything unrelated to y
as constant:
 $f(x,y) = C, y^2 + C_x$
 $easier to differenteate.$
 $f_y = 2C, y = f_{yy} = 2C,$
 $f_{yyy} = 0$ $f_{yyyxx} = 0$,

61. Let f(x, y) = 2x + 3y − 4. Find the slope of the line tangent to this surface at the point (2, −1) and lying in the a. plane x = 2
b. plane y = −1.

$$x = 2$$
,
 $f_y(x,y) = 3$
 $f_y(2,-1) = 3$
 \therefore the slope = 3

Z=f(x,y) x=2

$$y = -1$$
,
 $f_{x}(x, y) = 2$
 $f_{x}(z_{1} - 1) = 2$
 \therefore the slope = 2

y=-1 Z=f(x,y) **65.** Find the value of $\partial z / \partial x$ at the point (1, 1, 1) if the equation

$$xy + z^3x - 2yz = 0$$

defines z as a function of the two independent variables x and y and the partial derivative exists.

$$xy \in 3^{2} \times -233 = 0$$

$$\frac{3}{3\times} (xy + 3^{3} \times -233) = \frac{3}{3\times} (0)$$

$$y + 3^{3} + 33^{2} \times \frac{33}{3\times} - 23 \frac{33}{3\times} = 0$$

$$(33^{2} \times -23) \frac{33}{3\times} = -3 - 3^{3}$$

$$\frac{3}{3\times} (1,1,1) = -2$$
We don't differentiate y
with respect to x because
$$x_{1}y \text{ one independent complets}$$

$$0x = con differentiate y$$

$$w.r.t. \times und then
put $\frac{3y}{3\times} = 0$$$

71. Let $f(x, y) = \begin{cases} y^3, & y \ge 0 \\ -y^2, & y < 0. \end{cases}$

Find f_x, f_y, f_{xy} , and f_{yx} , and state the domain for each partial derivative.

$$f_{x} = 0 \qquad f_{xy} = 0$$
For $y > 0$, $f_{y} = 3y^{2}$

$$y < 0$$
, $f_{y} = -2y$

$$\frac{h}{h^{50}} \cdot \frac{f(o(h) - f(0)}{h} = \frac{h}{h^{50}} \cdot \frac{h^{3} - 0}{h} = 0$$

$$\frac{h}{h^{50}} \cdot \frac{f(o(h) - f(0)}{h} = \frac{h}{h^{50}} \cdot \frac{h^{2} - 0}{h} = 0$$

$$\therefore \quad f_{y}(x, 0) = 0$$

$$\therefore \quad f_{y}(x, 0) = 0$$

$$f_{yx} = 0$$

92. Let
$$f(x, y) = \begin{cases} 0, & x^2 < y < 2x^2 \\ 1, & \text{otherwise.} \end{cases}$$

Show that $f_x(0, 0)$ and $f_y(0, 0)$ exist, but *f* is not differentiable at (0, 0).

To show not differentiable:
Method 1: By definition:
Def (differentiability).

$$f: \Omega \in (\mathbb{R}^{n} \rightarrow \mathbb{R} \text{ is sold to be}$$

 $differentiable of a
24
(i). all 1st order partial derivatives exists at a.
(ii).
 $f(\mathbb{R}) = f(\mathbb{R}) + \prod_{i=1}^{n} \frac{\partial H}{\partial (\mathbb{R})} (\mathbb{R}) (\mathbb{K}_{i} - \mathbb{A}_{i}) + \mathbb{E}(\mathbb{R})$
 $\lim_{i=1}^{n} \mathbb{E}(\mathbb{R}) \times \mathbb{R}$
 $\lim_{i=1}^{n} \mathbb{E}(\mathbb{R}) + \lim_{i=1}^{n} \mathbb{E}(\mathbb{R}) (\mathbb{K}_{i} - \mathbb{A}_{i}) + \mathbb{E}(\mathbb{R})$
 $\lim_{i=1}^{n} \mathbb{E}(\mathbb{R}) \times \mathbb{R}$
 $\lim_{i=1}^{n} \mathbb{E}(\mathbb{R}) = \mathbb{E}(\mathbb{R}) + \lim_{i=1}^{n} \mathbb{E}(\mathbb{R}) + \lim_{i=1}^{n} \mathbb{E}(\mathbb{R})$
 $\operatorname{Recall}: \operatorname{Teylor}$ Sizes for $f: \mathbb{R} \rightarrow \mathbb{R}$.
 $f(\mathbb{R}) = \frac{f(\mathbb{A}) + f'(\mathbb{A})(\mathbb{K} - \mathbb{A}) + \frac{f''(\mathbb{A})}{\mathbb{E}(\mathbb{R})} + \lim_{i=1}^{n} \mathbb{E}(\mathbb{R}) + \lim_{i=1}^{n} \mathbb{E}(\mathbb{R$$

(-...) :-

$$\begin{split} \varepsilon(x_{1}y) &= f(x_{1}y) - \left[f(\circ, \circ) + \frac{\partial}{\partial x} f_{(\circ, \circ)}(x-\circ) + \frac{\partial}{\partial y} f_{(\circ, \circ)}(y-\circ)\right] \\ &+ \frac{\partial}{\partial y} f_{(\circ, \circ)}(y-\circ) \\ &= f(x_{1}y) - 1 \end{split}$$

$$\xi(x,y) = \begin{cases} 0, else \end{cases}$$

